Unified Classical Thermodynamics: Primacy of Dissymmetry over Free Energy

Author:

Wang Lin-Shu1ORCID

Affiliation:

1. Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

In thermodynamic theory, free energy (i.e., available energy) is the concept facilitating the combined applications of the theory’s two fundamental laws, the first and the second laws of thermodynamics. The critical step was taken by Kelvin, then by Helmholtz and Gibbs—that in natural processes, free energy dissipates spontaneously. With the formulation of the second law of entropy growth, this may be referred to as the dissymmetry proposition manifested in the spontaneous increase of system/environment entropy towards equilibrium. Because of Kelvin’s pre-entropy law formulation of free energy, our concept of free energy is still defined, within a framework on the premise of primacy of energy, as “body’s internal energy or enthalpy, subtracted by energy that is not available”. This primacy of energy is called into question because the driving force to cause a system’s change is the purview of the second law. This paper makes a case for an engineering thermodynamics framework, instead, to be based on the premise of the primacy of dissymmetry over free energy. With Gibbsian thermodynamics undergirded with dissymmetry proposition and engineering thermodynamics with a dissymmetry premise, the two branches of thermodynamics are unified to become classical thermodynamics.

Publisher

MDPI AG

Reference36 articles.

1. William Thomson and the Creation of Thermodynamics: 1840–1855;Smith;Arch. Hist. Exact Sci.,1977

2. Thomson, W. (1911). Mathematical and Physical Papers of William Thomson, Cambridge University Press.

3. Triadic relations in thermodynamics;Wang;Energy Convers. Manag. X,2022

4. Tait’s Thermodynamics II;Maxwell;Nature,1878

5. Vemulapalli, G.K. (2012). Thermodynamics in Chemistry. Philosophy of Chemistry, Elsevier B.V.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3