In Situ Evaluation of the Influence of Interstitial Oxygen on the Elastic Modulus of La2NiO4

Author:

Kimura Yuta,Nakamura Takashi,Amezawa Koji,Yashiro KeijiORCID,Kawada Tatsuya

Abstract

Lattice defects significantly affect the mechanical properties of crystalline metal oxides. The materials for the components of solid oxide fuel cells (SOFCs) are no exception, and hence understanding of the interplay between lattice defects and the mechanical properties of components is important to ensure the mechanical stability of SOFCs. Herein, we performed an in situ evaluation of the temperature and P(O2) dependence of the elastic moduli of La2NiO4 (LN214), a candidate for the cathode material of SOFCs, using the resonance method to understand the influence of interstitial oxygen on its elastic properties. Above 873 K, both the Young’s and shear moduli of LN214 slightly decreased with increasing P(O2), suggesting that these elastic moduli are correlated with interstitial oxygen concentration and decreased with increasing interstitial oxygen. We analyzed the influence of interstitial oxygen on the Young’s modulus of LN214, based on numerically obtained lattice energy. The P(O2) dependence of the Young’s modulus of LN214 was found to be essentially explained by variation in the c-lattice constant, which was triggered by variation in interstitial oxygen concentration. These findings may contribute to a better understanding of the relationship between lattice defects and mechanical properties, and to the improvement of the mechanical stability of SOFCs.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3