Abstract
Recently, a few computational methodologies and algorithms have been developed to simulate the microstructure evolution in powder bed fusion (PBF) additive manufacturing (AM) processes. However, none of these have attempted to simulate the grain structure evolution in multitrack, multilayer AM components in a fully 3D transient mode and for the entire AM geometry. In this work, a multiscale model, which consists of coupling a transient, discrete-source 3D AM process model with a 3D stochastic solidification structure model, was applied to quickly, efficiently, and accurately predict the grain structure evolution of IN625 alloys during Laser Powder Bed Fusion (LPBF). The capabilities of this model include studying the effects of process parameters and part geometry on solidification conditions and their impact on the grain structure formation within multicomponent alloy parts processed via AM. Validation was accomplished based on single-layer LPBF IN625 benchmark experiments, previously performed and analyzed at the National Institute of Standards and Technology (NIST), USA. This modeling approach can also be used to quantitatively predict the solidification structure of Ti-6Al-4V alloys in electron beam AM processes.
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献