Recent Progress in Understanding the Nano/Micro-Mechanical Behavior of Austenite in Advanced High Strength Steels

Author:

Guan Qingwen,Lu Wenjun,He Binbin

Abstract

Advanced high strength steels (AHSS) are developed to reduce vehicle weight without sacrificing passenger safety. The newly developed AHSS frequently incorporates the austenite as the intrinsic component with large amount and good stability, which is realized by carefully designed alloying elements and thermo-mechanical processing. To explore the great potential of austenite in enhancing the strain hardening behavior of AHSS, detailed information on the mechanical behavior of single austenite grain is a prerequisite, which can be collected by a small-scale test. The present work reviews the recent progress in understanding the nano/micro-mechanical behavior of austenite in varied AHSS. Three different plasticity modes including dislocation plasticity, martensitic transformation, and deformation twinning can be observed in the austenite grains during small-scale tests, given proper stacking fault energy and crystal orientation. The remaining issues concerned with the nano/micro-mechanical behavior of austenite are discussed. The present review advances the general understanding of the nano/micro-mechanical behavior of austenite grains in AHSS, which may shed light on the precise austenite engineering with the development of new AHSS, realizing the dream of high-performance steels at low cost.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Commission of Shenzhen

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on hydrogen embrittlement behavior of steel structures and measurement methods;International Advanced Researches and Engineering Journal;2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3