Abstract
The influence of the heat treatment on the plastic anisotropy of an Al–Mg–Si sheet was investigated by experiments and crystal plasticity simulations. Uniaxial tension tests were conducted for the naturally aged (T4 temper) and annealed (O temper) Al–Mg–Si sheets. Solute atoms Mg and Si form clusters in the T4 temper sheet, while they bind to form precipitates in the O temper sheet. It is found that the in-plane variation of the R value, texture, and grain size are almost identical for both sheets. By contrast, the anisotropy of the flow stress is clearly dissimilar; the flow stress is the highest in the diagonal direction for the O temper sheet, whereas the flow stress in that direction is nearly lowest for the T4 temper sheet. Thus, the heat treatment alters the anisotropy of the flow stress. The plastic behaviors of the specimens were simulated using the dislocation density-based crystal plasticity model. The influence of the dislocation interaction matrix on the plastic anisotropy was examined. The orientation dependence of the flow stress is found to be sensitive to the interaction matrix. The flow stresses predicted by the interaction matrix determined based on the dislocation dynamic simulation agree with the experimental results for the O temper sheet. Whereas this interaction matrix does not reproduce the flow stress anisotropy for the T4 temper sheet. When the interactions among the dislocations are set to equivalent—i.e., the interaction matrix is filled with unity—the crystal plasticity simulation results in the flow stress anisotropy that is similar to the experimental trend of the T4 temper sheet. In contrast to the flow stress, the R value is insensitive to the interaction matrix, and the predicted R values agree with the experimental results for both specimens.
Funder
Japan Society for the Promotion of Science
Light Metal Educational Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献