A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification

Author:

Ma Bao1,Ma Jun1ORCID,Yu Guolin1

Affiliation:

1. School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, China

Abstract

In this work, we address the problem of improving the classification performance of machine learning models, especially in the presence of noisy and outlier data. To this end, we first innovatively design a generalized adaptive robust loss function called Vθ(x). Intuitively, Vθ(x) can improve the robustness of the model by selecting different robust loss functions for different learning tasks during the learning process via the adaptive parameter θ. Compared with other robust loss functions, Vθ(x) has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, making it suitable for a wide range of machine learning applications. Secondly, a new robust semi-supervised learning framework for pattern classification is proposed. In this learning framework, the proposed robust loss function Vθ(x) and capped L2,p-norm robust distance metric are introduced to improve the robustness and generalization performance of the model, especially when the outliers are far from the normal data distributions. Simultaneously, based on this learning framework, the Welsch manifold robust twin bounded support vector machine (WMRTBSVM) and its least-squares version are developed. Finally, two effective iterative optimization algorithms are designed, their convergence is proved, and their complexity is calculated. Experimental results on several datasets with different noise settings and different evaluation criteria show that our methods have better classification performance and robustness. With the Cancer dataset, when there is no noise, the classification accuracy of our proposed methods is 94.17% and 95.62%, respectively. When the Gaussian noise is 50%, the classification accuracy of our proposed methods is 91.76% and 90.59%, respectively, demonstrating that our method has satisfactory classification performance and robustness.

Funder

Natural Science Foundation of Ningxia Provincial of China

Key Research and Development Program of Ningxia

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3