Optimization of Leakage Risk and Maintenance Cost for a Subsea Production System Based on Uncertain Fault Tree

Author:

Zhao Jianyin1,Ma Liuying2,Sun Yuan1,Shan Xin1,Liu Ying3

Affiliation:

1. No. 3 Department, Naval Aviation University, Yantai 264001, China

2. College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 300457, China

3. College of Management, Tianjin University of Technology, Tianjin 300384, China

Abstract

Traditional fault tree analysis is an effective tool used to evaluate system risk if the required data are sufficient. Unfortunately, the operation and maintenance data of some complex systems are difficult to obtain due to economic or technical reasons. The solution is to invite experts to evaluate some critical aspect of the performance of the system. In this study, the belief degrees of the occurrence of basic events evaluated by experts are measured by an uncertain measure. Then, a system risk assessment method based on an uncertain fault tree is proposed, based on which two general optimization models are established. Furthermore, the genetic algorithm (GA) and the nondominated sorting genetic algorithm II (NSGA-II) are applied to solve the two optimization models, separately. In addition, the proposed risk assessment method is applied for the leakage risk evaluation of a subsea production system, and the two general optimization models are used to optimize the leakage risk and maintenance cost of the subsea production system. The optimization results provide a theoretical basis for practitioners to guarantee the safety of subsea production system.

Funder

the Humanities and Social Sciences Foundation of the Ministry of Education

the Scientific Research Project of Tianjin Education Commission

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3