Fault Detection and Identification with Kernel Principal Component Analysis and Long Short-Term Memory Artificial Neural Network Combined Method

Author:

Jafari Nahid1ORCID,Lopes António M.2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran

2. LAETA/INEGI, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

A new fault detection and identification approach is proposed. The kernel principal component analysis (KPCA) is first applied to the data for reducing dimensionality, and the occurrence of faults is determined by means of two statistical indices, T2 and Q. The K-means clustering algorithm is then adopted to analyze the data and perform clustering, according to the type of fault. Finally, the type of fault is determined using a long short-term memory (LSTM) neural network. The performance of the proposed technique is compared with the principal component analysis (PCA) method in early detecting malfunctions on a continuous stirred tank reactor (CSTR) system. Up to 10 sensor faults and other system degradation conditions are considered. The performance of the LSTM neural network is compared with three other machine learning techniques, namely the support vector machine (SVM), K-nearest neighbors (KNN) algorithm, and decision trees, in determining the type of fault. The results indicate the superior performance of the suggested methodology in both early fault detection and fault identification.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3