Affiliation:
1. Faculty of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran
2. LAETA/INEGI, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
Abstract
A new fault detection and identification approach is proposed. The kernel principal component analysis (KPCA) is first applied to the data for reducing dimensionality, and the occurrence of faults is determined by means of two statistical indices, T2 and Q. The K-means clustering algorithm is then adopted to analyze the data and perform clustering, according to the type of fault. Finally, the type of fault is determined using a long short-term memory (LSTM) neural network. The performance of the proposed technique is compared with the principal component analysis (PCA) method in early detecting malfunctions on a continuous stirred tank reactor (CSTR) system. Up to 10 sensor faults and other system degradation conditions are considered. The performance of the LSTM neural network is compared with three other machine learning techniques, namely the support vector machine (SVM), K-nearest neighbors (KNN) algorithm, and decision trees, in determining the type of fault. The results indicate the superior performance of the suggested methodology in both early fault detection and fault identification.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献