A New Framework for Sustainable Supplier Selection Based on a Plant Growth Simulation Algorithm

Author:

Li Jing1,Wang Weizhong2

Affiliation:

1. School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. School of Economics and Management, Anhui Normal University, Wuhu 241002, China

Abstract

With the intensification of global competition and the increasing awareness of reducing energy consumption, sustainable supplier selection is crucial for establishing a solid cooperative relationship in sustainable supply chain management. This paper proposes a new framework that considers both the effective expression of uncertain information and the objective weights of decision makers to select sustainable suppliers. We first apply an interval-valued intuitionistic fuzzy set to express the information of decision makers. Moreover, this paper applies a plant growth simulation algorithm to aggregate decision makers’ information. Next, we adopt the similarity measure method to derive the target weight of each decision maker. Then, we apply the score function to rank the candidate sustainable suppliers. Finally, two practical cases are presented to verify the effectiveness of the proposed framework. The outcomes and comparative discussion show that the developed framework is efficient for sustainable supplier selection. Therefore, the proposed framework can be used to establish a solid cooperative relationship in the process of sustainable supply chain management.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

General Project of Philosophy and Social Sciences Research in Colleges and Universities of Jiangsu Province

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3