Approximation Relations on the Posets of Pseudoultrametrics

Author:

Nykorovych Svyatoslav1,Nykyforchyn Oleh12ORCID,Zagorodnyuk Andriy1ORCID

Affiliation:

1. Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Str., 76018 Ivano-Frankivsk, Ukraine

2. Institute of Mathematics, Casimir the Great University in Bydgoszcz, 30 Jana Karola Chodkiewicza Str., 85-064 Bydgoszcz, Poland

Abstract

In this paper we study pseudoultrametrics, which are a natural mixture of ultrametrics and pseudometrics. They satisfy a stronger form of the triangle inequality than usual pseudometrics and naturally arise in problems of classification and recognition. The text focuses on the natural partial order on the set of all pseudoultrametrics on a fixed (not necessarily finite) set. In addition to the “way below” relation induced by a partial order, we introduce its version which we call “weakly way below”. It is shown that a pseudoultrametric should satisfy natural conditions closely related to compactness, for the set of all pseudoultrametric weakly way below it to be non-trivial (to consist not only of the zero pseudoultrametric). For non-triviality of the set of all pseudoultrametrics way below a given one, the latter must be compact. On the other hand, each compact pseudoultrametric is the least upper bound of the directed set of all pseudoultrametrics way below it, which are compact as well. Thus it is proved that the set CPsU(X) of all compact pseudoultrametric on a set X is a continuous poset. This shows that compactness is a crucial requirement for efficiency of approximation in methods of classification by means of ultrapseudometrics.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference13 articles.

1. On ultrametrics and equivalence relations—Duality;Int. Math. Forum,2010

2. Legendre, P., and Legendre, L. (2012). Numerical Ecology, Elsevier. [3rd ed.]. Developments in Environmental Modelling 24.

3. Ultrametric model of mind, I: Review;Murtagh;P-Adic Numbers Ultrametric Anal. Appl.,2012

4. Generalized ultrametric upaces in quantitative domain theory;Theor. Comput. Sci.,2006

5. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S. (2003). Continuous Lattices and Domains, Cambridge University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3