η-Ricci–Yamabe Solitons along Riemannian Submersions

Author:

Siddiqi Mohd Danish1ORCID,Mofarreh Fatemah2ORCID,Akyol Mehmet Akif3ORCID,Hakami Ali H.1

Affiliation:

1. Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 45142, Saudi Arabia

2. Mathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi Arabia

3. Department of Mathematics, Faculty of Arts and Sciences, Bingol University, Bingol 12000, Turkey

Abstract

In this paper, we investigate the geometrical axioms of Riemannian submersions in the context of the η-Ricci–Yamabe soliton (η-RY soliton) with a potential field. We give the categorization of each fiber of Riemannian submersion as an η-RY soliton, an η-Ricci soliton, and an η-Yamabe soliton. Additionally, we consider the many circumstances under which a target manifold of Riemannian submersion is an η-RY soliton, an η-Ricci soliton, an η-Yamabe soliton, or a quasi-Yamabe soliton. We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential vector field ω of the soliton is of gradient type =:grad(γ) and provide some examples of an η-RY soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian submersion with totally geodesic fibers.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference46 articles.

1. The embedding problem for Riemannian manifolds;Nash;Ann. Math.,1956

2. Stability and isolation phenomena for Yang-mills fields;Bourguignon;Commun. Math. Phys.,1981

3. Bourguignon, J.P., and Lawson, H.B. (1989). A mathematician’s visit to Kaluza-Klein theory. Rend. Semin. Mat. Torino Fasc. Spec, 143–163.

4. Kaluza-Klein theory with scalar fields and generalized Hopf manifolds;Ianus;Class. Quantum Gravity,1987

5. Rassias, G. (1991). The Mathematical Heritage of C. F. Gauss, World Scientific.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3