A Mixture Autoregressive Model Based on an Asymmetric Exponential Power Distribution

Author:

Jiang Yunlu1,Zhuang Zehong1

Affiliation:

1. Department of Statistics, College of Economics, Jinan University, Guangzhou 510632, China

Abstract

In nonlinear time series analysis, the mixture autoregressive model (MAR) is an effective statistical tool to capture the multimodality of data. However, the traditional methods usually need to assume that the error follows a specific distribution that is not adaptive to the dataset. This paper proposes a mixture autoregressive model via an asymmetric exponential power distribution, which includes normal distribution, skew-normal distribution, generalized error distribution, Laplace distribution, asymmetric Laplace distribution, and uniform distribution as special cases. Therefore, the proposed method can be seen as a generalization of some existing model, which can adapt to unknown error structures to improve prediction accuracy, even in the case of fat tail and asymmetry. In addition, an expectation-maximization algorithm is applied to implement the proposed optimization problem. The finite sample performance of the proposed approach is illustrated via some numerical simulations. Finally, we apply the proposed methodology to analyze the daily return series of the Hong Kong Hang Seng Index. The results indicate that the proposed method is more robust and adaptive to the error distributions than other existing methods.

Funder

NSFC

Natural Science Foundation of Guangdong

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3