The Relativistic Rotation Transformation and the Observer Manifold

Author:

Kichenassamy Satyanad12ORCID

Affiliation:

1. Laboratoire de Mathématiques de Reims (CNRS, UMR9008), Université de Reims Champagne-Ardenne, Moulin de la Housse, B.P. 1039, F-51687 Reims CEDEX 2, France

2. GREI (EPHE/PSL and Sorbonne-Université, Paris), Bâtiment de Recherche Nord, 14 Cours des Humanités, F-93322 Aubervilliers CEDEX, France

Abstract

We show that relativistic rotation transformations represent transfer maps between the laboratory system and a local observer on an observer manifold, rather than an event manifold, in the spirit of C-equivalence. Rotation is, therefore, not a parameterised motion on a background space or spacetime, but is determined by a particular sequence of tetrads related by specific special Lorentz transformations or boosts. Because such Lorentz boosts do not form a group, these tetrads represent distinct observers that cannot put together their local descriptions into a manifold in the usual sense. The choice of observer manifold depends on the dynamical situation under consideration, and is not solely determined by the kinematics. Three examples are given: Franklin’s rotation transformation for uniform plane rotation, the Thomas precession of a vector attached to an electron, and the motion of a charged particle in an electromagnetic field. In each case, at each point of its trajectory, there is a distinguished tetrad and a special Lorentz transformation that maps Minkowski space to the spacetime of the local observer on the curve.

Funder

CNRS

EPHE

GREI

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference61 articles.

1. Kichenassamy, S. (2023). Axiomatics of the Observer Manifold and Relativity. Axioms, 12.

2. Sur une tentative d’interprétation physique de la Relativité générale. Application au décalage vers le rouge des raies spectrales;Kichenassamy;Comptes-Rendus l’Acad. Des Sci. Paris,1964

3. Compléments à l’interprétation physique de la Relativité générale: Applications;Kichenassamy;Ann. l’Inst. Henri Poincaré Sect. A Phys. Théor.,1964

4. Mécanique ondulatoire et C-équivalence;Kichenassamy;Ann. Fond. Louis Broglie,2020

5. The meaning of rotation in the special theory of Relativity;Franklin;Proc. Natl. Acad. Sci. USA,1922

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3