Spatiotemporal Analysis of the Background Seismicity Identified by Different Declustering Methods in Northern Algeria and Its Vicinity

Author:

Benali Amel1,Jalilian Abdollah2,Peresan Antonella3ORCID,Varini Elisa4ORCID,Idrissou Sara5

Affiliation:

1. Division Aléas et Risques Géologiques, Centre de Recherche en Astronomie, Astrophysique et Géophysique, Route de l’Observatoire, Bouzareah, Algiers 16340, Algeria

2. Department of Statistics, Razi University, Bagh-e-Abrisham, Kermanshah 67144-1511, Iran

3. Seismological Research Centre, National Institute of Oceanography and Applied Geophysics–OGS, Via Treviso 55, 33100 Udine, Italy

4. Institute of Applied Mathematics and Information Technologies Enrico Magenes, National Research Council, Via Corti 12, 20133 Milan, Italy

5. Département de Génie Civil, Faculté de Technologie, Université Abderrahmane Mira, Route de Targa Ouzemmour, Béjaia 06000, Algeria

Abstract

The main purpose of this paper was to, for the first time, analyse the spatiotemporal features of the background seismicity of Northern Algeria and its vicinity, as identified by different declustering methods (specifically: the Gardner and Knopoff, Gruenthal, Uhrhammer, Reasenberg, Nearest Neighbour, and Stochastic Declustering methods). Each declustering method identifies a different declustered catalogue, namely a different subset of the earthquake catalogue that represents the background seismicity, which is usually expected to be a realisation of a homogeneous Poisson process over time, though not necessarily in space. In this study, a statistical analysis was performed to assess whether the background seismicity identified by each declustering method has the spatiotemporal properties typical of such a Poisson process. The main statistical tools of the analysis were the coefficient of variation, the Allan factor, the Markov-modulated Poisson process (also named switched Poisson process with multiple states), the Morisita index, and the L–function. The results obtained for Northern Algeria showed that, in all cases, temporal correlation and spatial clustering were reduced, but not totally eliminated in the declustered catalogues, especially at long time scales. We found that the Stochastic Declustering and Gruenthal methods were the most successful methods in reducing time correlation. For each declustered catalogue, the switched Poisson process with multiple states outperformed the uniform Poisson model, and it was selected as the best model to describe the background seismicity in time. Moreover, for all declustered catalogues, the spatially inhomogeneous Poisson process did not fit properly the spatial distribution of earthquake epicentres. Hence, the assumption of stationary and homogeneous Poisson process, widely used in seismic hazard assessment, was not met by the investigated catalogue, independently from the adopted declustering method. Accounting for the spatiotemporal features of the background seismicity identified in this study is, therefore, a key element towards effective seismic hazard assessment and earthquake forecasting in Algeria and the surrounding area.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3