Affiliation:
1. College of Computer Science and Engineering, Jishou University, Jishou 416000, China
2. School of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China
Abstract
The dynamic Sylvester equation (DSE) is frequently encountered in engineering and mathematics fields. The original zeroing neural network (OZNN) can work well to handle DSE under a noise-free environment, but may not work in noise. Though an integral-enhanced zeroing neural network (IEZNN) can be employed to solve the DSE under multiple-noise, it may fall flat under linear noise, and its convergence speed is unsatisfactory. Therefore, an accelerated double-integral zeroing neural network (ADIZNN) is proposed based on an innovative design formula to resist linear noise and accelerate convergence. Besides, theoretical proofs verify the convergence and robustness of the ADIZNN model. Moreover, simulation experiments indicate that the convergence rate and anti-noise ability of the ADIZNN are far superior to the OZNN and IEZNN under linear noise. Finally, chaos control of the sine function memristor (SFM) chaotic system is provided to suggest that the controller based on the ADIZNN has a smaller amount of error and higher accuracy than other ZNNs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province of China
Research Foundation of Education Bureau of Hunan Province of China
Hunan Provincial Innovation Foundation For Postgraduate
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献