Affiliation:
1. Department of Mathematics, Technion–Israel Institute of Technology, Haifa 3200003, Israel
Abstract
In this paper, we study a feasibility problem with infinitely many sets in a metric space. We present a novel algorithm and analyze its convergence. The algorithms used for the feasibility problem in the literature work for finite collections of sets and cannot be applied if the collection of sets is infinite. The main feature of these algorithms is that, for iterative steps, we need to calculate the values of all the operators belonging to our family of maps and even their sums with weighted coefficients. This is impossible if the family of maps is not finite. In the present paper, we introduce a new algorithm for solving feasibility problems with infinite families of sets and study its convergence. It turns out that our results hold for feasibility problems in a general metric space.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献