Color Image Recovery Using Generalized Matrix Completion over Higher-Order Finite Dimensional Algebra

Author:

Liao Liang1ORCID,Guo Zhuang1,Gao Qi1,Wang Yan1ORCID,Yu Fajun1ORCID,Zhao Qifeng1,Maybank Stephen John2,Liu Zhoufeng1,Li Chunlei1,Li Lun3

Affiliation:

1. School of Electronics and Information, Zhongyuan University of Technology, Zhengzhou 451191, China

2. Birkbeck College, University of London, London WC1E 7HY, UK

3. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

To improve the accuracy of color image completion with missing entries, we present a recovery method based on generalized higher-order scalars. We extend the traditional second-order matrix model to a more comprehensive higher-order matrix equivalent, called the “t-matrix” model, which incorporates a pixel neighborhood expansion strategy to characterize the local pixel constraints. This “t-matrix” model is then used to extend some commonly used matrix and tensor completion algorithms to their higher-order versions. We perform extensive experiments on various algorithms using simulated data and publicly available images. The results show that our generalized matrix completion model and the corresponding algorithm compare favorably with their lower-order tensor and conventional matrix counterparts.

Funder

Henan Center for Outstanding Overseas Scientists

Machine Intelligence and High-Dimensional Data Analysis

Key Technologies R&D Program of Henan

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference33 articles.

1. Data-driven discovery of intrinsic dynamics;Floryan;Nat. Mach. Intell.,2022

2. Low dimensional trajectory hypothesis is true: DNNs can be trained in tiny subspaces;Li;IEEE Trans. Pattern Anal. Mach. Intell.,2022

3. Nonparametric regression on low-dimensional manifolds using deep ReLU networks: Function approximation and statistical recovery;Chen;Inf. Inference J. IMA,2022

4. A novel classifier ensemble method based on subspace enhancement for high-dimensional data classification;Xu;IEEE Trans. Knowl. Data Eng.,2021

5. Low-rank tensor approximation with local structure for multi-view intrinsic subspace clustering;Fu;Inf. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3