On Two Intuitionistic Fuzzy Modal Topological Structures

Author:

Atanassov Krassimir12ORCID,Angelova Nora3ORCID,Pencheva Tania4ORCID

Affiliation:

1. Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria

2. Intelligent Systems Laboratory, Prof. Dr. Assen Zlatarov University, 1 “Prof. Yakimov” Blvd., 8010 Burgas, Bulgaria

3. Faculty of Mathematics and Informatics, Sofia University, 5 James Bouchier Blvd., 1164 Sofia, Bulgaria

4. Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria

Abstract

The concept of an Intuitionistic Fuzzy Modal Topological Structure (IFMTS) was introduced previously, and some of its properties were studied. So far, there are two different IFMTSs based on the classical intuitionistic fuzzy operations: “union” (∪) and “intersection” (∩). In the present paper, two new IFMTSs are developed. They are based on new intuitionistic fuzzy topological operators from closure and interior types, introduced here for the first time, and on the two standard intuitionistic fuzzy modal operators □ and ◊. Some basic properties of the new IFMTSs are discussed. The newly presented IFMTSs could be considered as a basis for the next research on the IFMTSs. Some ideas for the future development of the IFMTS theory and open problems are formulated, related to the existence of other intuitionistic fuzzy operations that can generate new intuitionistic fuzzy topological operators and, respectively, new IFMTSs.

Funder

Bulgarian National Science

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference43 articles.

1. Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological Structure. Mathematics, 10.

2. Bourbaki, N. (1960). Éléments De Mathématique, Livre III: Topologie Générale, Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes, Herman. (In French).

3. Kuratowski, K. (1966). Topology, Academic Press.

4. Munkres, J. (2000). Topology, Prentice Hall Inc.

5. Blackburn, P., van Benthem, J., and Wolter, F. (2006). Handbook of Modal Logic, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3