A Reliable Computational Scheme for Stochastic Reaction–Diffusion Nonlinear Chemical Model

Author:

Arif Muhammad Shoaib12ORCID,Abodayeh Kamaleldin1ORCID,Nawaz Yasir2

Affiliation:

1. Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan

Abstract

The main aim of this contribution is to construct a numerical scheme for solving stochastic time-dependent partial differential equations (PDEs). This has the advantage of solving problems with positive solutions. The scheme provides conditions for obtaining positive solutions, which the existing Euler–Maruyama method cannot do. In addition, it is more accurate than the existing stochastic non-standard finite difference (NSFD) method. Theoretically, the suggested scheme is more accurate than the current NSFD method, and its stability and consistency analysis are also shown. The scheme is applied to the linear scalar stochastic time-dependent parabolic equation and the nonlinear auto-catalytic Brusselator model. The deficiency of the NSFD in terms of accuracy is also shown by providing different graphs. Many observable occurrences in the physical world can be traced back to certain chemical concentrations. Examining and understanding the inter-diffusion between chemical concentrations is important, especially when they coincide. The Brusselator model is the gold standard for describing the relationship between chemical concentrations and other variables in chemical systems. A computational code for the proposed model scheme may be made available to readers upon request for convenience.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference48 articles.

1. Fluctuations in nonequilibrium systems;Nicolis;Proc. Natl. Acad. Sci. USA,1971

2. Spatio-temporal numerical modeling of auto-catalytic Brusselator model;Ahmed;Rom. J. Phys.,2019

3. Positivity preserving computational techniques for nonlinear autocatalytic chemical reaction model;Ahmed;Rom. Rep. Phys.,2020

4. Numerical treatment of an epidemic model withspatial diffusion;Ahmed;J. Appl. Environ. Biol. Sci.,2018

5. Numerical analysis of auto-catalytic glycolysis model;Ahmed;AIP Adv.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3