PSEV-BF Methodology for Object Recognition of Birds in Uncontrolled Environments

Author:

Hernández-González Lucía1,Frausto-Solís Juan1ORCID,González-Barbosa Juan1ORCID,Sánchez-Hernández Juan2ORCID,Hernández-Rabadán Deny2,Román-Rangel Edgar3ORCID

Affiliation:

1. Graduate & Research Division, Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Madero City 89440, Mexico

2. Information of Technology Division, UPEMOR, Jiutepec Cty 62574, Mexico

3. Department of Computer Science, Instituto Tecnológico Autónomo de México, México City 01080, Mexico

Abstract

Computer vision methodologies using machine learning techniques usually consist of the following phases: pre-processing, segmentation, feature extraction, selection of relevant variables, classification, and evaluation. In this work, a methodology for object recognition is proposed. The methodology is called PSEV-BF (pre-segmentation and enhanced variables for bird features). PSEV-BF includes two new phases compared to the traditional computer vision methodologies, namely: pre-segmentation and enhancement of variables. Pre-segmentation is performed using the third version of YOLO (you only look once), a convolutional neural network (CNN) architecture designed for object detection. Additionally, a simulated annealing (SA) algorithm is proposed for the selection and enhancement of relevant variables. To test PSEV-BF, the repository commons object in Context (COCO) was used with images exhibiting uncontrolled environments. Finally, the APIoU metric (average precision intersection over union) is used as an evaluation benchmark to compare our methodology with standard configurations. The results show that PSEV-BF has the highest performance in all tests.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3