An Analytic Solution for 2D Heat Conduction Problems with Space–Time-Dependent Dirichlet Boundary Conditions and Heat Sources

Author:

Hsu Heng-Pin1,Chang Jer-Rong1ORCID,Weng Chih-Yuan2,Huang Chun-Jung3ORCID

Affiliation:

1. Department of Aircraft Engineering, Air Force Institute of Technology, 1 Associate Jyulun Road, Gang-Shan District, Kaoshiung City 820, Taiwan

2. Department of Mechanical Engineering, Air Force Institute of Technology, 1 Associate Jyulun Road, Gang-Shan District, Kaoshiung City 820, Taiwan

3. Department of Aircraft Maintenance, Far East University, 49 Zhonghua Road, Xinshi District, Tainan City 744, Taiwan

Abstract

This study proposes a closed-form solution for the two-dimensional (2D) transient heat conduction in a rectangular cross-section of an infinite bar with space–time-dependent Dirichlet boundary conditions and heat sources. The main purpose of this study is to eliminate the limitations of the previous study and add heat sources to the heat conduction system. The restriction of the previous study is that the values of the boundary conditions and initial conditions at the four corners of the rectangular region should be zero. First, the boundary value problem of 2D heat conduction system is transformed into a dimensionless form. Second, the dimensionless temperature function is transformed so that the temperatures at the four endpoints of the boundary of the rectangular region become zero. Dividing the system into two one-dimensional (1D) subsystems and solving them by combining the proposed shifting function method with the eigenfunction expansion theorem, the complete solution in series form is obtained through the superposition of the subsystem solutions. Three examples are studied to illustrate the efficiency and reliability of the method. For convenience, the space–time-dependent functions used in the examples are considered separable in the space–time domain. The linear, parabolic, and sine functions are chosen as the space-dependent functions, and the sine, cosine, and exponential functions are chosen as the time-dependent functions. The solutions in the literature are used to verify the correctness of the solutions derived using the proposed method, and the results are completely consistent. The parameter influence of the time-dependent function of the boundary conditions and heat sources on the temperature variation is also investigated. The time-dependent function includes exponential type and harmonic type. For the exponential time-dependent function, a smaller decay constant of the time-dependent function leads to a greater temperature drop. For the harmonic time-dependent function, a higher frequency of the time-dependent function leads to a more frequent fluctuation of the temperature change.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3