Multi-Task Deep Learning Games: Investigating Nash Equilibria and Convergence Properties

Author:

Lee Minhyeok1ORCID

Affiliation:

1. School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

Abstract

This paper conducts a rigorous game-theoretic analysis on multi-task deep learning, providing mathematical insights into the dynamics and interactions of tasks within these models. Multi-task deep learning has attracted significant attention in recent years due to its ability to leverage shared representations across multiple correlated tasks, leading to improved generalization and reduced training time. However, understanding and examining the interactions between tasks within a multi-task deep learning system poses a considerable challenge. In this paper, we present a game-theoretic investigation of multi-task deep learning, focusing on the existence and convergence of Nash equilibria. Game theory provides a suitable framework for modeling the interactions among various tasks in a multi-task deep learning system, as it captures the strategic behavior of learning agents sharing a common set of parameters. Our primary contributions include: casting the multi-task deep learning problem as a game where each task acts as a player aiming to minimize its task-specific loss function; introducing the notion of a Nash equilibrium for the multi-task deep learning game; demonstrating the existence of at least one Nash equilibrium under specific convexity and Lipschitz continuity assumptions for the loss functions; examining the convergence characteristics of the Nash equilibrium; and providing a comprehensive analysis of the implications and limitations of our theoretical findings. We also discuss potential extensions and directions for future research in the multi-task deep learning landscape.

Funder

Generative Artificial Intelligence System Inc.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference43 articles.

1. A guide to machine learning for biologists;Greener;Nat. Rev. Mol. Cell Biol.,2022

2. When machine learning meets privacy: A survey and outlook;Liu;ACM Comput. Surv. (CSUR),2021

3. Machine learning and the physical sciences;Carleo;Rev. Mod. Phys.,2019

4. Generative adversarial network: An overview of theory and applications;Aggarwal;Int. J. Inf. Manag. Data Insights,2021

5. Generative adversarial networks in medical image augmentation: A review;Chen;Comput. Biol. Med.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3