Affiliation:
1. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
Abstract
This paper calculates numerical solutions of an extended three-coupled Korteweg–de Vries system by the q-homotopy analysis transformation method (q-HATM), which is a hybrid of the Laplace transform and the q-homotopy analysis method. Multiple investigations inspecting planetary oceans, optical cables, and cosmic plasma have employed the KdV model, significantly contributing to its development. The uniqueness, convergence, and maximum absolute truncation error of this algorithm are demonstrated. A numerical simulation has been performed to validate the accuracy and validity of the proposed approach. With high accuracy and few algorithmic processes, this algorithm supplies a series solution in the form of a recursive relation.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Reference31 articles.
1. Leung, A.W. (2013). Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering, Springer Science Business Media.
2. Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics;Inc;Opt. Quantum Electron.,2018
3. Exact Traveling Wave Solutions of Nonlinear PDEs in Mathematical Physics Using the Modified Simple Equation Method;Zayed;Appl. Appl. Math.,2013
4. Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary;Boureghda;Commun. Numer. Methods Eng.,2006
5. Botmart, T., Alotaibi, B.M., Shah, R., El-Sherif, L.S., and El-Tantawy, S.A. (2022). A Reliable Way to Deal with the Coupled Fractional Korteweg-De Vries Equations within the Caputo Operator. Symmetry, 14.