An Analytic Solution for the Dynamic Behavior of a Cantilever Beam with a Time-Dependent Spring-like Actuator

Author:

Chang Jer-Rong1ORCID,Tu Te-Wen2,Huang Chun-Jung3ORCID

Affiliation:

1. Department of Aircraft Engineering, Air Force Institute of Technology, 1 Julun Road, Gang-Shan District, Kaohsiung City 820, Taiwan

2. Department of Mechanical Engineering, Air Force Institute of Technology, 1 Julun Road, Gang-Shan District, Kaohsiung City 820, Taiwan

3. Department of Aircraft Maintenance, Far East University, 49 Zhonghua Road, Xinshi District, Tainan City 744, Taiwan

Abstract

The purpose of this study is to derive an analytical solution for a cantilever beam with a novel spring-like actuator that behaves like a time-dependent spring and to study the dynamic behavior of the system. A time-dependent spring was set at the free end of the cantilever beam to model the novel spring-like actuator. First, the boundary conditions were transformed from being nonhomogeneous to being homogeneous using the shifting function method. The solution of the analytic series was then obtained by using the expansion theorem method. The correctness of the proposed analytical solution was verified by comparing the results with those obtained via the separation of variables in the special extreme case of a constant spring coefficient. We took the free end of a cantilever beam with harmonic spring stiffness and an external periodic unit load as an example. The influence of the actuator parameters, such as the effect of the magnitude and the frequency of the time-dependent spring stiffness on the resonance frequency, was investigated. An important new result was found, i.e., that the resonance frequency is clearly dependent on the magnitude and the frequency of the spring-like actuator in the first two modes, but not in the third and fourth modes. In practical engineering applications, system resonance can be avoided by adjusting the magnitude and frequency of the actuator.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3