Pitch Control of Wind Turbine Blades Using Fractional Particle Swarm Optimization

Author:

Karami-Mollaee Ali,Barambones OscarORCID

Abstract

To achieve the maximum power from wind in variable-speed regions of wind turbines (WTs), a suitable control signal should be applied to the pitch angle of the blades. However, the available uncertainty in the modeling of WTs complicates calculations of these signals. To cope with this problem, an optimal controller is suitable, such as particle swarm optimization (PSO). To improve the performance of the controller, fractional order PSO (FPSO) is proposed and implemented. In order to construct this approach for a two-mass WT, we propose a new state feedback, which was first applied to the turbine. The idea behind this state feedback was based on the Taylor series. Then, a linear model with uncertainty was obtained with a new input control signal. Thereafter, the conventional PSO (CPSO) and FPSO were used as optimal controllers for the resulting linear model. Finally, a comparison was performed between CPSO and FPSO and the fuzzy Takagi–Sugeno–Kang (TSK) inference system. The provided comparison demonstrates the advantages of the Taylor series with combination to these controllers. Notably, without the state feedback, CPSO, FPSO, and TSK fuzzy systems cannot stabilize WTs in tracking the desired trajectory.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3