Generalized Cauchy–Schwarz Inequalities and A-Numerical Radius Applications

Author:

Altwaijry Najla1ORCID,Feki Kais23ORCID,Furuichi Shigeru4ORCID

Affiliation:

1. Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Faculty of Economic Sciences and Management of Mahdia, University of Monastir, Mahdia 5111, Tunisia

3. Laboratory Physics-Mathematics and Applications (LR/13/ES-22), Faculty of Sciences of Sfax, University of Sfax, Sfax 3018, Tunisia

4. Department of Information Science, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550, Japan

Abstract

The purpose of this research paper is to introduce new Cauchy–Schwarz inequalities that are valid in semi-Hilbert spaces, which are generalizations of Hilbert spaces. We demonstrate how these new inequalities can be employed to derive novel A-numerical radius inequalities, where A denotes a positive semidefinite operator in a complex Hilbert space. Some of our novel A-numerical radius inequalities expand upon the existing literature on numerical radius inequalities with Hilbert space operators, which are important tools in functional analysis. We use techniques from semi-Hilbert space theory to prove our results and highlight some applications of our findings.

Funder

Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia, Researchers Supporting Project:

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference21 articles.

1. Bhunia, P., Dragomir, S.S., Moslehian, M.S., and Paul, K. (2022). Infosys Science Foundation Series in Mathematical Sciences, Springer.

2. Bounds for A-numerical radius based on an extension of A-Buzano inequality;Kittaneh;J. Comput. Appl. Math.,2023

3. Kittaneh, F., and Zamani, A. (2023). A refinement of A-Buzano inequality and applications to A-numerical radius inequalities. Linear Algebra Its Appl.

4. Numerical radius inequalities for indefinite inner product space operators;Ren;Adv. Oper. Theory,2023

5. Spectral analysis of bounded operators on semi-Hilbertian spaces;Baklouti;Banach J. Math. Anal.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3