An Approach for Approximating Analytical Solutions of the Navier-Stokes Time-Fractional Equation Using the Homotopy Perturbation Sumudu Transform’s Strategy

Author:

Iqbal Sajad12ORCID,Martínez Francisco3ORCID

Affiliation:

1. Department of Mathematics, Jiangsu University, Zhenjiang 212013, China

2. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, China

3. Department of Applied Mathematics and Statistics, Technological University of Cartagena, 30203 Cartagena, Spain

Abstract

In this study, we utilize the properties of the Sumudu transform (SuT) and combine it with the homotopy perturbation method to address the time fractional Navier-Stokes equation. We introduce a new technique called the homotopy perturbation Sumudu transform Strategy (HPSuTS), which combines the SuT with the homotopy perturbation method using He’s polynomials. This approach proves to be powerful and practical for solving various linear and nonlinear fractional partial differential equations (FPDEs) in scientific and engineering fields. We demonstrate the efficiency and simplicity of this method through examples, showcasing its ability to approximate solutions for FPDEs. Additionally, we compare the numerical results obtained using this technique for different values of alpha, showing that as the value moves from a fractional order to an integer order, the solution becomes increasingly similar to the exact solution. Furthermore, we provide the tabular representations of the solution for each example.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference35 articles.

1. Kilbas, A., Srivastava, H.M., and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier.

2. Podlubnv, I. (1999). Fractional Differential Equations, Academic Press.

3. Time-space fabric underlying anomalous diffusion;Chen;Chaos Solitons Fractals,2006

4. Recovery of the time-dependent implied volatility of time fractional Black–Scholes equation using linearization technique;Iqbal;J. Inverse Ill-Posed Probl.,2021

5. Mohammed, W.W., Al-Askar, F.M., Cesarano, C., and El-Morshedy, M. (2023). Solitary Wave Solution of a Generalized Fractional–Stochastic Nonlinear Wave Equation for a Liquid with Gas Bubbles. Mathematics, 11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3