Research on the Calculation Model and Control Method of Initial Supporting Force for Temporary Support in the Underground Excavation Roadway of Coal Mine

Author:

Wang Dongjie1,Li Rui12ORCID,Cheng Jiameng1,Zheng Weixiong1,Shen Yang13,Zhao Sihai1,Wu Miao1

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

2. Xi’an Institute of Electromechanical Information Technology, Xi’an, No. 16, Zhangba 2nd Road, High-Tech Zone, Xi’an 710065, China

3. School of Vehicle and Transportation Engineering, Tsinghua University, Beijing 100084, China

Abstract

This paper proposes a temporary support system for improving the efficiency and safety of underground roadway excavation in coal mines. Firstly, this study establishes a calculation model for the initial supporting force of the excavation of roadway temporary support and a gray system-based automatic prediction model for the initial supporting force level, based on the mechanism of temporary support controlling the roof. These models enable the prediction of the required initial supporting force at different locations along the roadway’s temporary support area, thereby providing a basis for controlling the initial supporting force of the temporary support system. To achieve efficient and adaptive control of the initial supporting force of temporary supports at different locations, this study designs a support force controller based on Simulated Annealing Particle Swarm Optimization Proportional-Integral-Derivative (SAPSO-PID). This study establishes a mathematical model for the hydraulic cylinder pressure system controlled by the temporary support overflow valve and conducts a stability analysis and model verification. The study constructs a simulation control system for the initial supporting force based on SAPSO-PID using the combined simulation platform of AMESim and Matlab. The simulation results demonstrate that the proposed support force control system efficiently achieves adaptive control of the initial supporting force of temporary supports. An experimental system in the underground roadway of a coal mine is constructed to validate the results of the simulation analysis.

Funder

Theory and Method of Excavation-Support-Anchor Parallel Control for Intelligent Excavation Complex System

China Postdoctoral Science Foundation

Youth Found of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3