Convergence Analysis of the Strang Splitting Method for the Degasperis-Procesi Equation

Author:

Zhang Runjie1,Fang Jinwei1ORCID

Affiliation:

1. School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510006, China

Abstract

This article is concerned with the convergence properties of the Strang splitting method for the Degasperis-Procesi equation, which models shallow water dynamics. The challenges of analyzing splitting methods for this equation lie in the fact that the involved suboperators are both nonlinear. In this paper, instead of building the second order convergence in L2 for the proposed method directly, we first show that the Strang splitting method has first order convergence in H2. In the analysis, the Lie derivative bounds for the local errors are crucial. The obtained first order convergence result provides the H2 boundedness of the approximate solutions, thereby enabling us to subsequently establish the second order convergence in L2 for the Strang splitting method.

Funder

National Natural Science Foundation of China

Guangzhou Basic and Applied Basic Research Project

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3