Infinite Series and Logarithmic Integrals Associated to Differentiation with Respect to Parameters of the Whittaker Mκ,μ(x) Function I

Author:

Apelblat Alexander1ORCID,González-Santander Juan Luis2ORCID

Affiliation:

1. Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

2. Department of Mathematics, Universidad de Oviedo, 33007 Oviedo, Spain

Abstract

In this paper, first derivatives of the Whittaker function Mκ,μx are calculated with respect to the parameters. Using the confluent hypergeometric function, these derivarives can be expressed as infinite sums of quotients of the digamma and gamma functions. Moreover, from the integral representation of Mκ,μx it is possible to obtain these parameter derivatives in terms of finite and infinite integrals with integrands containing elementary functions (products of algebraic, exponential, and logarithmic functions). These infinite sums and integrals can be expressed in closed form for particular values of the parameters. For this purpose, we have obtained the parameter derivative of the incomplete gamma function in closed form. As an application, reduction formulas for parameter derivatives of the confluent hypergeometric function are derived, along with finite and infinite integrals containing products of algebraic, exponential, logarithmic, and Bessel functions. Finally, reduction formulas for the Whittaker functions Mκ,μx and integral Whittaker functions Miκ,μx and miκ,μx are calculated.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference32 articles.

1. An expression of certain known functions as generalized hypergeometric functions;Whittaker;Bull. Am. Math. Soc.,1903

2. Whittaker, E.T., and Watson, G.N. (1963). A Course of Modern Analysis, Cabrigdge University Press. [4th ed.].

3. Buchholz, H. (1969). The Confluent Hypergeometric Function, Springer.

4. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1953). Higher Transcendental Functions, McGraw-Hill.

5. Gradstein, I.S., and Ryzhik, I.M. (2015). Table of Integrals, Series, and Products, Academic Press. [8th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3