Non-Parametric Regression and Riesz Estimators

Author:

Kountzakis Christos1ORCID,Tsachouridou-Papadatou Vasileia1

Affiliation:

1. Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, 83200 Samos, Greece

Abstract

In this paper, we consider a non-parametric regression model relying on Riesz estimators. This linear regression model is similar to the usual linear regression model since they both rely on projection operators. We indicate that Riesz estimator regression relies on the positive basis elements of the finite-dimensional sub-lattice generated by the rows of some design matrix. A strong motivation for using the Riesz estimator model is that the data of explanatory variables may come from categorical variables. Calculations related to Riesz estimator regression are very easy since they arise from the measurability in finite-dimensional probability spaces. Moreover, we show that the fitted model of Riesz estimators is an ordinary least squares model. Any vector of some Euclidean space is supposed to be a rendom variable under the objective probability values, being used in expected utility theory and its applications. Finally, the reader may notice that goodness-of-fit measures are similar to those defined for the usual linear regression. Due to the fact that this model is non-parametric, it may include samples relevant to finance and actuarial science variables.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference10 articles.

1. Riesz Estimators;Aliprantis;J. Econom.,2007

2. Lattice-Subspaces and positive projections;Abramovich;Proc. R. Irish Acad.,1994

3. Le Roy, S.F., and Werner, J. (2001). Principles of Financial Economics, Cambridge University Press.

4. Deelstra, G., and Plantin, G. (2014). Risk Theory an Reinsurance, Springer.

5. Von Neumann, J., and Morgenstern, O. (1947). Theory of Games and Economic Behavior, Princeton University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3