Affiliation:
1. School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, China
Abstract
A novel concept of quaternionic fuzzy sets (QFSs) is presented in this paper. QFSs are a generalization of traditional fuzzy sets and complex fuzzy sets based on quaternions. The novelty of QFSs is that the range of the membership function is the set of quaternions with modulus less than or equal to one, of which the real and quaternionic imaginary parts can be used for four different features. A discussion is made on the intuitive interpretation of quaternion-valued membership grades and the possible applications of QFSs. Several operations, including quaternionic fuzzy complement, union, intersection, and aggregation of QFSs, are presented. Quaternionic fuzzy relations and their composition are also investigated. QFS is designed to maintain the advantages of traditional FS and CFS, while benefiting from the properties of quaternions. Cuts of QFSs and rotational invariance of quaternionic fuzzy operations demonstrate the particularity of quaternion-valued grades of membership.
Funder
National Science Foundation of China
Zhejiang Provincial Natural Science Foundation
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献