SimuBP: A Simulator of Population Dynamics and Mutations Based on Branching Processes

Author:

Wu XiaoweiORCID

Abstract

Originating from the Luria–Delbrück experiment in 1943, fluctuation analysis (FA) has been well developed to demonstrate random mutagenesis in microbial cell populations and infer mutation rates. Despite the remarkable progress in its theory and applications, FA often faces difficulties in the computation perspective, due to the lack of appropriate simulators. Existing simulation algorithms are usually designed specifically for particular scenarios, thus their applications may be largely restricted. There is a pressing need for more flexible simulators that rely on minimum model assumptions and are highly adaptable to produce data for a wide range of scenarios. In this study, we propose SimuBP, a simulator of population dynamics and mutations based on branching processes. SimuBP generates data based on a general two-type branching process, which is able to mimic the real cell proliferation and mutation process. Through simulations under traditional FA assumptions, we demonstrate that the data generated by SimuBP follow expected distributions, and exhibit high consistency with those generated by two alternative simulators. The most impressive feature of SimuBP lies in its flexibility, which enables the simulation of data analogous to real fluctuation experiments. We demonstrate the application of SimuBP through examples of estimating mutation rates.

Funder

Virginia Tech’s Open Access Subvention Fund

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference29 articles.

1. Mathematical models for estimating mutation rates in cell populations;Crump;Biometrika,1974

2. Harris, T.E. (1963). The Theory of Branching Processes, Prentice-Hall.

3. On the probability of the extinction of families;Galton;J. R. Anthropol. Inst.,1875

4. On age-dependent binary branching processes;Bellman;Ann. Math.,1952

5. Age-dependent branching processes and applications to the Luria–Delbrück experiment;Oveys;Electron. J. Differ. Equ.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3