Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative

Author:

Srivastava Hari Mohan12345ORCID,Al-Shbeil Isra6ORCID,Xin Qin7ORCID,Tchier Fairouz8ORCID,Khan Shahid9ORCID,Malik Sarfraz Nawaz10ORCID

Affiliation:

1. Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada

2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

3. Center for Converging Humanities, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

4. Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan

5. Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy

6. Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan

7. Faculty of Science and Technology, University of the Faroe Islands, Vestarabryggja 15, FO 100 Torshavn, Faroe Islands, Denmark

8. Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

9. Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan

10. Department of Mathematics, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan

Abstract

By utilizing the concept of the q-fractional derivative operator and bi-close-to-convex functions, we define a new subclass of A, where the class A contains normalized analytic functions in the open unit disk E and is invariant or symmetric under rotation. First, using the Faber polynomial expansion (FPE) technique, we determine the lth coefficient bound for the functions contained within this class. We provide a further explanation for the first few coefficients of bi-close-to-convex functions defined by the q-fractional derivative. We also emphasize upon a few well-known outcomes of the major findings in this article.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3