Exploring the Mutual Influence Relationships of International Airport Resilience Factors from the Perspective of Aviation Safety: Using Fermatean Fuzzy DEMATEL Approach

Author:

Huang Hsiu-Chen1,Huang Chun-Nen2,Lo Huai-Wei3ORCID,Thai Tyan-Muh1

Affiliation:

1. Department of Crime Prevention and Corrections, Central Police University, Taoyuan City 333322, Taiwan

2. Department of Fire Science, Central Police University, Taoyuan City 333322, Taiwan

3. Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

Abstract

International airports are responding to the threat of climate change and various man-made hazards by proposing impact protection measures. Airport managers and risk controllers should develop a comprehensive risk assessment model to measure the mutual influence relationships of resilience factors. In this paper, the problem of treating resilience factors as independent ones in previous studies is overcome. In this study, we not only develop a framework for assessing resilience factors in international airports based on an aviation safety perspective, but also develop the Fermatean fuzzy decision-making trial and evaluation laboratory (FF-DEMATEL) to identify the mutual influence relationships of resilience factors. Fermatean fuzzy sets are incorporated in DEMATEL to reflect information incompleteness and uncertainty. The critical resilience factors of international airports were identified through real-case analysis. In terms of importance, the results show that rescue capability is a core capability that is important for airport resilience. In addition, “security management system (SeMS) integrity”, “education and training of ground staff on airport safety awareness”, “first aid mechanism for the injured”, and “adequate maintenance equipment for rapid restoration tasks” are identified as key factors that are given more weights. On the other hand, in terms of influence strength, the detection capability has the highest total influence and significantly influenced the other resilience capabilities. Finally, the influential network relation map (INRM) is utilized to assist decisionmakers in swiftly comprehending the impact of factors and formulating viable strategies to enhance airport resilience. This enables airport managers and risk controllers to make informed decisions and allocate resources efficiently.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3