Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions

Author:

Alsoboh Abdullah1ORCID,Amourah Ala2ORCID,Sakar Fethiye Müge3ORCID,Ogilat Osama4ORCID,Gharib Gharib Mousa5ORCID,Zomot Nasser5

Affiliation:

1. Department of Mathematics, Al-Leith University College, Umm Al-Qura University, Mecca 24382, Saudi Arabia

2. Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, Jordan

3. Department of Management, Faculty of Economics and Administrative Sciences, Dicle University, Diyarbakir 21280, Turkey

4. Department of Basic Sciences, Faculty of Arts and Science, Al-Ahliyya Amman University, Amman 19328, Jordan

5. Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan

Abstract

The paper introduces a new family of analytic bi-univalent functions that are injective and possess analytic inverses, by employing a q-analogue of the derivative operator. Moreover, the article establishes the upper bounds of the Taylor–Maclaurin coefficients of these functions, which can aid in approximating the accuracy of approximations using a finite number of terms. The upper bounds are obtained by approximating analytic functions using Faber polynomial expansions. These bounds apply to both the initial few coefficients and all coefficients in the series, making them general and early, respectively.

Funder

Umm Al-Qura University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference56 articles.

1. Über polynomische entwickelungen;Faber;Math. Ann.,1903

2. On q-definite integrals;Jackson;Q. J. Pure Appl. Math.,1910

3. Certain subclasses of analytic functions associated with fractional q-calculus operators;Purohit;Fract. Differ. Equ. Introd. Fract. Deriv.,2011

4. Podlubny, I. (1998). Fractional differential equations, to methods of their solution and some of their applications. Math. Scand., 340.

5. Gasper, G., and Rahman, M. (2004). Basic Hypergeometric Series, Cambridge University Press.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3