The Boundary Integral Equation for Kinetically Limited Dendrite Growth

Author:

Titova Ekaterina A.1ORCID,Galenko Peter K.2ORCID,Nikishina Margarita A.1ORCID,Toropova Liubov V.3ORCID,Alexandrov Dmitri V.1ORCID

Affiliation:

1. Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg 620000, Russia

2. Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743 Jena, Germany

3. Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51, Ekaterinburg 620000, Russia

Abstract

The boundary integral equation defining the interface function for a curved solid/liquid phase transition boundary is analytically solved in steady-state growth conditions. This solution describes dendrite tips evolving in undercooled melts with a constant crystallization velocity, which is the sum of the steady-state and translational velocities. The dendrite tips in the form of a parabola, paraboloid, and elliptic paraboloid are considered. Taking this solution into account, we obtain the modified boundary integral equation describing the evolution of the patterns and dendrites in undercooled binary melts. Our analysis shows that dendritic tips always evolve in a steady-state manner when considering a kinetically controlled crystallization scenario. The steady-state growth velocity as a factor that is dependent on the melt undercooling, solute concentration, atomic kinetics, and other system parameters is derived. This expression can be used for determining the selection constant of the stable dendrite growth mode in the case of kinetically controlled crystallization.

Funder

Ministry of Science and High Education of the Russian Federation

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference61 articles.

1. Mullin, J.W. (1972). Crystallization, Butterworths.

2. Borisov, V.T. (1987). Theory of Two-Phase Zone of a Metal Ingot, Metallurgiya Publishing House.

3. Slezov, V.V. (2009). Kinetics of First-Order Phase Transitions, Wiley-VCH.

4. Progress in modelling solidification microstructures in metals and alloys: Dendrites and cells from 1700 to 2000;Kurz;Int. Mater. Rev.,2019

5. Steady-state crystallization with a mushy layer: A test of theory with experiments;Makoveeva;Eur. Phys. J. Spec. Top.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3