New Conditions for Testing the Asymptotic and Oscillatory Behavior of Solutions of Neutral Differential Equations of the Fourth Order

Author:

Nabih Amany12,Moaaz Osama13ORCID,AlNemer Ghada4ORCID,Elabbasy Elmetwally M.1

Affiliation:

1. Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

2. Department of Basic Sciences, Higher Future Institute of Engineering and Technology in Mansoura, Mansoura 35516, Egypt

3. Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia

4. Department of Mathematical Science, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 105862, Riyadh 11656, Saudi Arabia

Abstract

In this work, in the noncanonical case, we find new properties for a class of positive solutions of fourth-order differential equations. These properties allow us to obtain iterative criteria that exclude positive decreasing solutions, and we then establish sufficient conditions to guarantee that all solutions to the examined equation oscillate. The importance of applying the results to a special case of the investigated equation is demonstrated.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference25 articles.

1. Hale, J.K. (1971). Analytic Theory of Differential Equations, Springer.

2. Courant, R., and Hilbert, D. (2023, January 13). Methods of Mathematical Physics; Wiley Classics Library. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527617210.

3. Forced oscillation for functional differential equations of fourth order;Onose;Bull. Fac. Sci. Ibaraki Univ. Ser. A,1979

4. Oscillation of fourth-order delay differential equations;Zhang;J. Math. Scs.,2014

5. Gyri, I., and Ladas, G. (1991). Oscillation Theory of Delay Differential Equations, Oxford University Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3