Tensor Eigenvalue and SVD from the Viewpoint of Linear Transformation

Author:

Zhao Xinzhu1,Dong Bo2,Yu Bo2,Yu Yan3

Affiliation:

1. School of Mathematics and Statistics, Liaoning University, Shenyang 110036, China

2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

3. Business School, Dalian University of Foreign Language, Dalian 116044, China

Abstract

A linear transformation from vector space to another vector space can be represented as a matrix. This close relationship between the matrix and the linear transformation is helpful for the study of matrices. In this paper, the tensor is regarded as a generalization of the matrix from the viewpoint of the linear transformation instead of the quadratic form in matrix theory; we discuss some operations and present some definitions and theorems related to tensors. For example, we provide the definitions of the triangular form and the eigenvalue of a tensor, and the theorems of the tensor QR decomposition and the tensor singular value decomposition. Furthermore, we explain the significance of our definitions and their differences from existing definitions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province, China

Scientific Research Foundation of Education Department of Liaoning Province, China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference17 articles.

1. Eigenvalues of a real supersymmetric tensor;Qi;J. Symbolic Comput.,2005

2. A multilinear singular value decomposition;Vandewalle;SIAM J. Matrix Anal. Appl.,2000

3. Chen, W.J., and Yu, S.W. (2023). RSVD for Three Quaternion Tensors with Applications in Color Video Watermark Processing. Axioms, 12.

4. Lim, L.H. (2005, January 13–15). Singular values and eigenvalues of tensors: A variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico.

5. A tensor singular values and its symmetric embedding eigenvalues;Chen;J. Comput. Appl. Math.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3