Efficient Method to Solve the Monge–Kantarovich Problem Using Wavelet Analysis

Author:

Acosta-Portilla Juan Rafael1ORCID,González-Flores Carlos2ORCID,López-Martínez Raquiel Rufino3ORCID,Sánchez-Nungaray Armando3ORCID

Affiliation:

1. Instituto de Investigaciones y Estudios Superiores Económicos y Sociales, Universidad Veracruzana, Veracruz 94294, Mexico

2. Escuela Superior de Ingeniería Mecánica y Eléctrica Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico

3. Facultad de Matemáticas, Universidad Veracruzana, Veracruz 94294, Mexico

Abstract

In this paper, we present and justify a methodology to solve the Monge–Kantorovich mass transfer problem through Haar multiresolution analysis and wavelet transform with the advantage of requiring a reduced number of operations to carry out. The methodology has the following steps. We apply wavelet analysis on a discretization of the cost function level j and obtain four components comprising one corresponding to a low-pass filter plus three from a high-pass filter. We obtain the solution corresponding to the low-pass component in level j−1 denoted by μj−1*, and using the information of the high-pass filter components, we get a solution in level j denoted by μ^j. Finally, we make a local refinement of μ^j and obtain the final solution μjσ.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference19 articles.

1. Approximation schemes for infinite linear programs;Lasserre;SIAM J. Optim.,1998

2. On solutions to the mass transfer problem;SIAM J. Optim.,2006

3. Numerical approximations to the mass transfer problem on compact spaces;IMA J. Numer. Anal.,2010

4. A metaheuristic for a numerical approximation to the mass transfer problem;Int. J. Appl. Math. Comput. Sci.,2016

5. An Efficient Numerical Approximation for the Monge–Kantorovich Mass Transfer Problem;Pardalos;Machine Learning, Optimization, and Big Data. MOD 2015,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3