Personalized Transfer Learning Framework for Remaining Useful Life Prediction Using Adaptive Deconstruction and Dynamic Weight Informer

Author:

Liu Xue1ORCID,Ma Jian123,Song Dengwei4ORCID

Affiliation:

1. School of Reliability and System Engineering, Beihang University, Beijing 100191, China

2. Institute of Reliability Engineering, Beihang University, Beijing 100191, China

3. Science & Technology Laboratory on Reliability & Environmental Engineering, Beihang University, Beijing 100191, China

4. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China

Abstract

The precise remaining useful life (RUL) prediction of turbofan engines benefits maintenance decisions. The training data quantity and quality are crucial for effective prediction modeling and accuracy improvement. However, the performance degradation process of the same type of turbofan engine usually exhibits different trajectories because of engines’ differences in degradation degrees, degradation rates, and initial health states. In addition, the initial part of the trajectory is a stationary health stage, which contains very little information on degradation and is not helpful for modeling. Considering the differential degradation characteristics and the requirement for accurate prediction modeling of the same type of turbofan engines with individual differences, we specifically propose a personalized transfer learning framework for RUL prediction by answering three key questions: when, what, and how to transfer in prediction modeling. The framework tries to maximumly utilize multi-source-domain data (samples of the same type of engines that run to failure) to improve the training data quantity and quality. Firstly, a transfer time identification method based on a dual-baseline performance assessment and the Wasserstein distance is designed to eliminate the worthless part of a trajectory for transfer and prediction modeling. Then, the transferability of each sample in the multi-source domain is measured by an approach, named the time-lag ensemble distance measurement, and then the source domain is ranked and adaptively deconstructed into two parts according to transferability. Ultimately, a new training loss function considering the transferability of the weighted multi-source-domain data and a two-stage transfer learning scheme is introduced into an informer-based RUL prediction model, which has a great advantage for long-time-series prediction. The simulation data of 100 of the same type of turbofan engine with individual differences and five comparison experiments validate the effectiveness and accuracy of the proposed method.

Funder

Science and Technology Foundation of State Key Laboratory

Civil Aircraft Special Research Project

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3