Equivalent Statements of Two Multidimensional Hilbert-Type Integral Inequalities with Parameters

Author:

Li Yiyuan1,Zhong Yanru2,Yang Bicheng3

Affiliation:

1. School of Art and Design, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

3. School of Mathematics, Guangdong University of Education, Guangzhou 510303, China

Abstract

By means of the weight functions, the idea of introduced parameters and the transfer formulas, two multidimensional Hilbert-type integral inequalities with the general nonhomogeneous kernel as H(||x||αλ1||y||βλ2)(λ1,λ2≠0) are given, which are some extensions of the Hilbert-type integral inequalities in the two-dimensional case. Some equivalent conditions of the best value and several parameters related to the new inequalities are provided. Two corollaries regarding the kernel, represented as kλ(||x||αλ1,||y||βλ2)(λ1,λ2≠0), are given, and a few new inequalities for the particular parameters are obtained.

Funder

National Natural Science Foundation of China

Innovation Key Project of Guangxi Province

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference18 articles.

1. Hardy, G.H., Littlewood, J.E., and Polya, G. (1934). Inequalities, Cambridge University Press.

2. Yang, B.C. (2009). The Norm of Operator and Hilbert-Type Inequalities, Science Press.

3. Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces;Batbold;Math. Inequal. Appl.,2017

4. Multiple Hilbert-type inequalities involving some differential operators;Adiyasuren;Banach J. Math. Anal.,2016

5. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0;Yang;J. Math. Inequalities,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inequalities for linear combinations of orthogonal projections and applications;Journal of Pseudo-Differential Operators and Applications;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3