Abstract
In the context of global warming and energy shortage, this paper discusses the techno-economic feasibility of a residential household based on 100% renewable energy in China. The energy storage life, equipment’s residual value, system shortage capacity and atmospheric pollution emissions were considered comprehensively. A life cycle evaluation model based on the net present value (NPV) was built. Taking a real household as an example, the levelised cost of energy (LCOE) is 0.146 $/kW and the unmet load is only 0.86%, which has a big economic advantage when compared with diesel generators. If grid-connected, the system can bring $8079 in 25 years when the LCOE is −0.062 $/kW. The effects of the allowed shortage capacity, renewable energy resources, battery price and the allowed depth of discharge on the economy and energy structure were examined. For example, due to the features of the residential load, the influence of wind resource richness is more obvious than the irradiance. The maximum depth of discharge has less impact on the economy. This paper verifies the techno-economic rationality and feasibility of 100% renewable energy for a household.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献