Design and Analysis of Flexible Multi-Microgrid Interconnection Scheme for Mitigating Power Fluctuation and Optimizing Storage Capacity

Author:

Zhou JianqiaoORCID,Zhang JianwenORCID,Cai Xu,Shi Gang,Wang Jiacheng,Zang Jiajie

Abstract

With the rapid increase of renewable energy integration, more serious power fluctuations are introduced in distribution systems. To mitigate power fluctuations caused by renewables, a microgrid with energy storage systems (ESSs) is an attractive solution. However, existing solutions are still not sufficiently cost-effective for compensating enormous power fluctuations considering the high unit cost of ESS. This paper proposes a new flexible multi-microgrid interconnection scheme to address this problem while optimizing the utilization of ESSs as well. The basic structure and functions of the proposed scheme are illustrated first. With the suitable power allocation method in place to realize fluctuation sharing among microgrids, the effectiveness of this scheme in power smoothing is analyzed mathematically. The corresponding power control strategies of multiple converters integrated into the DC common bus are designed, and the power fluctuation sharing could be achieved by all AC microgrids and DC-side ESS. In addition, a novel ESS sizing method which can deal with discrete data set is introduced. The proposed interconnection scheme is compared with a conventional independent microgrid scheme through real-world case studies. The results demonstrate the effectiveness of the interconnected microgrid scheme in mitigating power fluctuation and optimizing storage capacity, while at the expense of slightly increased capacity requirement for the AC/DC converters and construction cost for DC lines. According to the economic analysis, the proposed scheme is most suitable for areas where the distances between microgrids are short.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Solar PV Integration Challenges

2. The sun also rises;Bebic;IEEE Power Energy Mag.,2009

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3