Abstract
Knowledge about laminar–turbulent transition on operating multi megawatt wind turbine (WT) blades needs sophisticated equipment like hot films or microphone arrays. Contrarily, thermographic pictures can easily be taken from the ground, and temperature differences indicate different states of the boundary layer. Accuracy, however, is still an open question, so that an aerodynamic glove, known from experimental research on airplanes, was used to classify the boundary-layer state of a 2 megawatt WT blade operating in the northern part of Schleswig-Holstein, Germany. State-of-the-art equipment for measuring static surface pressure was used for monitoring lift distribution. To distinguish the laminar and turbulent parts of the boundary layer (suction side only), 48 microphones were applied together with ground-based thermographic cameras from two teams. Additionally, an optical camera mounted on the hub was used to survey vibrations. During start-up (SU) (from 0 to 9 rpm), extended but irregularly shaped regions of a laminar-boundary layer were observed that had the same extension measured both with microphones and thermography. When an approximately constant rotor rotation (9 rpm corresponding to approximately 6 m/s wind speed) was achieved, flow transition was visible at the expected position of 40% chord length on the rotor blade, which was fouled with dense turbulent wedges, and an almost complete turbulent state on the glove was detected. In all observations, quantitative determination of flow-transition positions from thermography and microphones agreed well within their accuracy of less than 1%.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference35 articles.
1. Understanding Wind Power Technology
2. Introduction to Wind Turbine Aerodynamics;Schaffarczyk,2014
3. Theory of Wind Sections;Abbot,1959
4. TAU-Code User Guide, Release 2018.1.0,2018
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献