Study on China’s Renewable Energy Policy Reform and Improved Design of Renewable Portfolio Standard

Author:

Dong Fugui,Shi LeiORCID,Ding Xiaohui,Li Yuan,Shi Yongpeng

Abstract

China officially implemented the renewable portfolio standard (RPS) on 1 January 2019, and it remains uncertain as to whether this can effectively solve the problem of renewable energy consumption in China and ease the pressure of government subsidies. In order to study the impact of this policy on China’s renewable energy power generation and explore RPS policy that is more suitable for the characteristics of China’s renewable energy, we first develop a revenue function model based on the just released RPS policy to explore the effectiveness of the policy, the feasibility conditions for successful implementation, and the problems that may be encountered during the implementation process. Then, we propose policy recommendations based on the possible problems of the current policy and design an “incremental electricity price” supplementary policy to improve the possibility of successful implementation of the RPS policy. Finally, an evolutionary game model is established to simulate and verify the possibility of successful implementation of the supplementary policy. The main research results are: (1) the essence of the current RPS policy is the comprehensive implementation policy of the RPS and feed-in-tariff (FiT); (2) because of the characteristics of China’s energy structure, the implementation of this policy reform is more resistant; (3) the quantitative research on the revenue function model shows that the current transaction price of the green certificate market is very low, which is not conducive to alleviating the state’s subsidy pressure on renewable energy power generation; and (4) analysis of empirical data shows that the successful implementation of the “incremental electricity price” policy relies on the initial strategies of grid companies and users.

Funder

Science Foundation of Ministry of Education of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3