Braided Fabrication of a Fiber Bragg Grating Sensor

Author:

Lee Songbi,Lee Joohyeon

Abstract

Our objective was to construct textile braiding manufacturing methods to facilitate high precision and accurate measurements using optical fiber Bragg grating sensors for various structures. We aimed to combine three-dimensional (3D) braiding processing with the optical Bragg grating sensor’s accurate metrology. Outside the limits of the sensor’s epoxy attachment methods, the textile braiding method can diversify the scope of application. The braiding process can be used to design a 3D fabric module process for multiple objective mechanical fiber arrangements and material characteristics. Optical stress–strain response conditions were explored through the optimization of design elements between the Bragg grating sensor and the braiding. Here, Bragg grating sensors were located 75% away from the fiber center. The sensor core structure was helical with a 1.54 cm pitch, and a polyurethane synthetic yarn was braided together with the sensor using a weaving machine. From the prototype results, a negative Poisson’s ratio resulted in a curled braided Bragg grating sensor. The number of polyurethane strands was studied to determine the role of wrap angle in the braiding. The 12-strands condition showed an increase in double stress–strain response rate at a Poisson’s ratio of 1.3%, and the 16-strands condition was found to have noise affecting the sensor at a Poisson’s ratio of 1.5%. The findings suggested the application of braiding fabrication to the Bragg grating sensor could help to develop a new monitoring sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3