Research on Positioning Method of Coal Mine Mining Equipment Based on Monocular Vision

Author:

Yu Rui,Fang Xinqiu,Hu Chengjun,Yang Xiuyu,Zhang XuhuiORCID,Zhang Chao,Yang Wenjuan,Mao Qinghua,Wan Jicheng

Abstract

In view of the insufficient characteristics and depth acquisition difficulties encountered in the process of uniocular vision measurement, the posture measurement scheme of tunneling equipment based on uniocular vision was proposed in this study. The positioning process of coal mine tunneling equipment based on monocular vision was proposed to extract the environmental features and match the features, and the RANSAC algorithm was used to eliminate the pair of mismatching points. This was done to solve the optimized matching pair and realize the pose estimation of the camera. The pose solution model based on the triangulation depth calculation method was proposed, and the PNP solution method was adopted based on the three-dimensional spatial point coordinates so as to improve the visual measurement accuracy and stability and lay the foundation for the 3D reconstruction of the roadway. This was done to simulate the downhole environment to build an experimental verification platform for monocular visual positioning. The experimental results showed that the position measurement accuracy of the uniocular visual roadheader positioning method within 60 mm and 1.3° could realize the accurate registration of the point cloud in the global coordinate system. The time required for the whole monocular visual positioning was only 179 ms, so it had good real-time performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference21 articles.

1. 2025 scenarios and development path of intelligent coal mine;Wang;J. China Coal Soc.,2018

2. Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals;Jia;Bioresour Technol.,2021

3. Research and practice on intelligent coal mine construction(primary stage);Wang;Coal Sci. Technol.,2019

4. Spatial pose kinematics model and simulation of boom-type roadheader;Wang;J. China Coal Soc.,2015

5. Roadheader positioning method combining total station and strapdown inertial navigation system;Zhang;J. Mine Autom.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3