Abstract
Owing to the variation between lithium-ion battery (LIB) cells, early discharge termination and overdischarge can occur when cells are coupled in series or parallel, thereby triggering a decrease in LIB module performance and safety. This study provides a modeling approach that considers the effect of cell variation on the performance of LIB modules in energy storage applications for improving the reliability of the power quality of energy storage devices and efficiency of the energy system. Ohm’s law and the law of conservation of charge were employed as the governing equations to estimate the discharge behavior of a single strand composing of two LIB cells connected in parallel based on the polarization properties of the electrode. Using the modeling parameters of a single strand, the particle swarm optimization algorithm was adopted to predict the discharge capacity and internal resistance distribution of 14 strands connected in series. Based on the model of the LIB strand to predict the discharge behavior, the effect of cell variation on the deviation of the discharge termination voltage and depth of discharge imbalance was modeled. The validity of the model was confirmed by comparing the experimental data with the modeling results.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Ministry of Science and ICT
Ministry of Trade, Industry & Energy
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献