Trough-Type Free-Form Secondary Solar Concentrator for CPV/T Application

Author:

Meng Xian-long,Ren Fu-Peng,Zhang Peng,Tang Zi-xuan

Abstract

Imaging concentrators like the parabolic trough solar concentrators have been widely employed for energy production in solar power plants. The conventional imaging solar concentrators form a non-uniform Gaussian distribution on receiving absorbers yielding the highest temperatures. The traditional CSP system normally truncated a peripheral region of heat flux to better use the central part. CPV/T systems using the waste heat recovery method can largely improve the total efficiency. However, for the CPV module, the coolant temperature was usually below 80 °C, which limited the applications of the thermal cycle such as the ORC system. In this article, a novel trough-type free-form secondary solar concentrator (TFSC) for PV/Thermal hybrid application has been proposed. Different from other CPV/T concepts using a combined PV panel and cooling tunnel/tube, the current concept separates the receiver in two parts. The secondary free-form reflector is generated by the geometric construction method, resulting in uniform heat flux in the edge region and high concentration in the central region. Through the ray tracing method, the optical properties have been verified. Sensitivity analysis of the concentrating structure is also conducted. The results provide supports for the design and applications of novel CPV/T systems.

Funder

Foundation Strengthen Project

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concentrating photovoltaic systems: a review of temperature effects and components;Journal of Thermal Analysis and Calorimetry;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3